Math 9

Rules of exponents!

Base:

A number in an equation that is being multiplied by itself.

Ex.
X^2

Exponent:

the number of times the base is multiplied by itself.

Ex.
X^2

Product rule:

multiplication question, you add 2 or more exponents with the same base together.

Ex. $x^{\wedge} c^{*} x^{\wedge} m=x^{\wedge} m+c$
$2 \wedge 3 * 2 \wedge 2=2 \wedge 3+2=2 \wedge 5=32$

Quotient rule:

the opposite of the product rule, but instead of adding, you subtract the 2 or more exponents with the same base.

Ex. $x^{\wedge} m / x^{\wedge} n=x^{\wedge} m-n$
$2 \wedge 4 / 2 \wedge 1=2 \wedge 3=8$

Power to power rule:

The power-to-power rule is when you multiply the 2 or more exponents.

Ex. $\left(x^{\wedge} m\right)^{\wedge} n$
$(2 \wedge 3) \wedge 2=(8) \wedge 2=64$

Zero exponent rule:

You may be wondering what happened if the exponent is a 0 , Well it must be O right? Wrong, It will

Power	Value
3^{3}	27
3^{2}	9
3^{1}	3
3^{0}	1

Negative exponent rule:

When the exponent is negative, to simplify, Turn it into a fraction with the variable and the exponent at the bottom (since $\mathrm{x}^{\wedge}-\mathrm{m}=\mathrm{x}^{\wedge}-\mathrm{m} / 1$)

Ex. $x^{\wedge}-n=1 / x^{\wedge} n$
$2 \wedge-4=1 \wedge 24$

One exponent rule:

Any base with the exponent as 1 will always equal the base.

$$
\text { Ex. } x \wedge 1=x \quad 2 \wedge 1=2
$$

